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Dipolar interactions in the dilute antiferromagnet in 2
vniform feld

H 8 Toh and G A Gehringt

Department of Theoretical Phystes, University of Oxford, 1 Keble Road, Oaford OX1 3P,
UK

Recesved 18 July 1991

Abstract. We examine the role played by dipolar interactions 1 the equilibrium critical
behaviour of the dilute antiferromagnet 1 a wweform feld (PAFF) The DAFF bas been
known t¢ map onto a rendom field model, and we perform a sianlar mapping, oaly thas
tume mncluding dipolar interactions. We conclude that dipoiar forces affect the DAFFin a
way no different from the case for the correspondmng pure system Dilution dogs not
generate any additional long-range forces or other effecis ansing from dipolar forces In
particular, in the final random field model which the DAFF maps onto, we find that the
mean-field propagator is unaffected by the inclusion of dipolar interactions save for some
constant terms We restrict our sork to the crittcal regron close to the transttion temperature
and asseme a domam-free state,

L. Introduction

The dilute antiferromagnet in a uniform field (paF=) has been shown o be described
by a random field modet (Fishman and Aharony [1], Cardy [2]); it is the dilution of
bonds or sites, coupled to the umform field, that generates the random field [1,2].
Taking into account nearest-neighbour 1nteractions only, Fishman and Aharony {1}
and Cardy [2] showed that the Hamiltonian describing the parr is the same as that
describing the random field Ising medel (rREiv). However, all magnetic systeimns contain
long-range anisotropic dipolar forces. These forces decisively affect the universality
properties of certain systems, e.g. the Ising ferromagnet [31. The influence of dipolar
forces on the DAFF has been ireated briefly by Nattermann [4]; he showed that in the
low-temperature multidomain state, in the presence of dipalar forces the DAFF is ne
longer in the same universahity class as the random field Ising model with nearest-
neighbour interactions only (shoit range rFM). Nattermann [4] also predicted that
the upper critical cimension 4, stll remains at 6 for both systems even if one takes
into account dipolar forces in the parFr, and high dimensions clese to 4., dipolar
inieractions will not change the static critical exponents. However, in Maitermann's
work the ferromagnetic fluctuations were neglecied {5] and it is the purpose of this
paper to include them carefully

The mfluence of dipolar interactions on 2 pure antiferromagnet has been siudied
by Gehring [6], starting with both antiferromagnetic and ferromagnetic order para-
meters and then integrating out the ferromagnetic order parameter. The resultant
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Hamiltornran was the same as that for the pure Ising model, except that the guariic ¢*
term has an angular contribution due to dipolar forces. The quadratic ¢* term is
unafiected. This work seeks to investigate if any additional dipolar effects would arise
with diluting the antiferromagnet, as in this case the ferromagnetic fluctuations couple
directly to the antiferromagnetic order parameter [1, 2], as welt as to the antiferromag-
netic energy density as for the pure metamagnet. With dilution we have a random field
model {1], and we can expect the non-equlibrium behaviour typical of such systems
{e.g. see Villain [7]). To study the dynamics plus the effects of dipolar forces on the
dynamics, one may have to go beyoid deriving the Hamiltonian.

This work will restrict itself mostly to the equibibrium situation, ihough a brief
mention of dipolar effects on the non-equilibrium behaviour will be made. As such
we will work within the following resirictions:

{i) extremely close to the transition temperature Ty

{11} hioh dimendion: cloge to the unnar critical dimeancion 4
L1} fgh dimensrong Clage to the upher crifical aimensich 4,

(iii) the transition is 10 an antiferromagnetically ordered phase.

2. Derivation of the Hamiltonizn

Using field-theoretical methods, Cardy [2] mapped the DAFF onto the rFim, but he
did not include dipolar interactions. Nelson and Fisher [8] treated the problem of a
pure metamagnet in a uniform field, using renormalization-group (rG) scaling argu-
ments and iwo order parameters—-an antiferromagnetic primary and a ferremagnetic
secondary order parameter—integrating out the secondary order parametiers. They too
did not take into account dipolar forces. Cur approach will combine the methods of
Cardy [2] and Melson and Fisher [8).

The Hamiltonian in real space for the site-diluted Ising antiferromagnet in a uniform
field is as foliows

FH=Y Hr~e(Ne(@)SF)SFY-H Y e(r)3(r) (1)
where
Sl =x+1
0 if a spin is absent at site r
el#)= . .. .
1 if a spin is present at site r

x={e{r}))
e{r)=x+plr)

and H is the uniform field. F(r— 7'} is the interaction between spins at » and ~, and
mcludes nearest-neighbour exchange as weil as long range dipolar interactions.

We use the Hubbard-Siratanoviteh transformation to convert to a field theory and
shift to elimmnate the umiform magastization M,. The magnetization fluctuation terms
are expressed in terms of a ferromagnetic and an antifersomagnetic component o(q)
and ¢{g) respectively in 2 reduced zone which is defined by & such that

+1 sité n on sublattice 4
e”"o R =
~1 site n on sublattice B,
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We define the Green functions for 2 pure ferromagnst 7 (g) and the Green functions
G(q,, g2) and K(g,, g,) for the dilute ferromagnet and antiferromagnet respectively.
For convenience we use a tensor notation. Repeated indices are not summed over,
unless explicitly stated.

flai=f G(g.4,)=G, J(kotg)=Jo. )
. ) Jo—Axl g,
2

G =8, — Aopon, i, (3)

K =fat8uy = AaporJoris; (4)
where

A =41~ (MeJ)’] (5)
and

F=ZJ(r'~r. (6)

The non-anaiytic dipolar contribution is present 1n J, and hence in G, and f. The
televant terms in the effective Hamiltonian are given below.

#;= Z K;kfﬁz% +P Z Po+gr b +%Moj Z Px+J+r+ofo+rju+j -I()f!d’td’u;qbf

i il

X
+ ZI jo+zjo+;fo+zj{}+:+_;+l¢a¢;¢’i¢x+;+r+z G;]LJ}UW} +2% BJa, (7)
Y i :

12
where
P=[3(MJ) - 11M,T (8
and
Blél= gﬁ: +3Az ? Forrrplor, By +%Moj§ &, yerdor Jorifhdy. (9)

We compiete the square in o and express the Hamiltonian entirely in terms of ¢:
Hy=Y K;lfbx@ + P Z Poerfor, By +%Mof§; p0+1+J+!JQ+IJQ+JJﬂ+r¢!¢)¢!
I ' u
x
+E Zi‘ jﬂ+1}0-v—jjﬂ+!>’()-“l+_[*1¢!¢j¢?¢i+1+’ _z B:TQ-B; (10)
Ly y
where we have defined
r,=1G,J. (11)

W praceed to determine this term BB, which contains ¢ terms and no ¢ ternis.
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P\? Pay
Brrij_; = (E) P;FUPJ _'_2_§ ptrnp_;+a+0ja+0¢a

P -
+A3 Zb Oudaroborard yBrorodorsds +Z (M) Zb:' oL e s ipdarodorotbathy
“%(Mof)zlz Zd ¢nJa+eﬂo+a+zrgPJ+c+djc+njd+u¢c¢‘d
+%{Mnf)4 g:d ProPylarodbroBas HZ—‘UEJ veraderodaro®ethys. (12)

We see that after integrating out o, there are contributions to ¢, ¢7, ¢°, ¢*

3. Anslysis of the Hamiltoniam

We now analyse the Hamiltonian of equation {10} and the terms in equation (12}, The
ferromagnetic order parameter was non-critical and mean-field; integrating it out of
the pariiion function conld be thought of as averaging over the ferromagnetic interac-
tiong in the DAFF, from which additional contriburions to the aniiferromagnetic ie.:ns
arise. Gehring [6] performed 2 similar ‘integrating out’ for the corresponding noa-dilute
system; there dipolar interactions were taken into account, and she found that there
was only a contribution to the quartic ¢ term. We analyse the role of both random
dilution and dipolar interactions in these contributions for the pArrE. Iy is related to
the dilute ferromagnetic propagator and contains a non-analytic dipolar contribution.
From equation (12} 1t is obvious that all terms in 3,I',B, contain non-analytic dipolar
contributions. However, all terms also contain the random dilution vanables p, £, and
it remains to be determined whether the ensemble average of each term will still contain
any non-analytic contribution. We will examine the final form of sach power of ¢ in
the Hamiltonian of equation (11} separately.
To derermine the ensemble average of all terms, we use the following relations:

Patolerd = PazbroPerdro= %1 =28, proea (13a)
Da roPeraro= 0. (136)

(A means the ensemble average of A.)

We begin with the quadratic ¢° term, because the inverse of the quadratic term is
the mean-field suscentibility. If the mean-field susceptibility has conimbutions from
the “integrating out’, then the systera will be affected at the mean-ficld level Higher

rder terms may affect the universality class and crincal behaviour of the svstem, but
only at a level beyond the mean-field approximation. in the standard graphical
peroarbation treatment of critical sysiems beyond the mean-field approximation, all
perturbation terms are expressed in terras of the mean-field propagator. If the mean-field
propagater contains any contribution terms that changes the physics in an important
way, all tsrms in the perwrbation series will be correspondingly affected. We wish to
determine if the ensemble-averaged guadiatic mean-field propagator contains any
long-range force or anisotiopy arising from the combined effects of dilution and dipolar
interactions. I the ensemble-averaged guadratic term in the DAFF contains any
anisotropic contribution, the universality of the system will be altered and the static
critical exponents affected [3]. By companson, for the non-dilute aniiferromagnet in
a uniform Seld, the quadratic propagator is unaffected by the mclusion of dipolar
interactions aftser integrating out the o [6}.
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The full quadratic term in the finsl Hamiltoman 1s Cff’r,b,qu where the coefficient
,!- —
C;Z) = K;1+ !-’\; ).c pO+1+t;rabe PJTG‘*’%P(MO")Z ZI; pai-‘absb-rr+J]Jﬂ+l-}0+_r- (14)
ab a
___We wish to determine the ensemole-averaged quadratic term, which will involve

'C™. This in turn involves I', and its ensemble average T,. From equation (11), we
need to determine G, which is the inverse of

Gl=f718.,— Aapes, s {135)

B a3 i+ 2FETfY N
We define
&=J1fJ (16)
Gg mf;61+1 + "‘-Z.af:j!ph—} %j;+ "\22- E.ﬁj;erbe.j;’]bpbﬁ“j‘B-E + (i-}')
B
- —nf 4+ . o +2V en Lon . o F1RY
—rxy e, © AaBiFhag T “2% B HhEhFb ey U . RNy
In deriving equation (18) we have used equations (i1) and (16)
w— keT -
T,= B—J:‘—mz—z,] =8, (19)

Z,, or in ordinary momentum-space notation Z(g), is the self-energy and 1s analytic
and well ‘defined even as ¢ tends to zero. For a more detailed proof of equations
{15)-{19) and the properties of = and v, see the apnendix. We have just derived a side
result for spin waves in a dilute ferromagnet, even though this work is concerned with
the dilute antiferromagnet The effect of dilutier is io create a self-energy contribution
Z{g) to the energy of the ferromagnetic spin waves (Edwards and Jones [2]). By
showing that dtpolar interactions 4o noi coniribute any non- analy‘txc term to the

1 Ty ' wre
S€if1- WIICIEY . we 51:‘-"'; U‘S.llil

= bl Mo et rmamds e LI G N T

i’:‘;i‘ L EHG Uiii.ii.i\.iik UUWB UL VECALE ﬂily uxpuml uE Ilighcl
order long range coniribution to the spin wave energy and ensemble-averaged Green
function in the {erromagnet-

13

Ebpbé-zAi‘arabpb-r_lH): x(l_x}(z yﬂ)gl'rj (20)
o (1V.
ﬁ Fal obBpriry = EI:}‘ U}DH-J {z )

For a more detailed proof of eguations {20} and (21), refer o the appendixz. In
eguation (20), v. is summed over the interna! dummy momentum ¢, ; hence it is a
consiant independent of external momenta Z(g) has 2 well defined limit 2t g=10;
hence in equacon {21) Z(0) is also a constant. Using equations (20), (21) the ensemble-
averaged quadratic term is

- kT 2 A
CE_,?)QS,é)J [B jO-H X}sz-fow-’c—,—-‘é(l"x}»’vz(z Ya)jl}rljo——x !

BRI
- Z(Gj]'a+n10 T (baé—x (22}
4\ A, / ]
The self-energy Z{g) does not centain any dipolar contribution in the Hmit g0,
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The ensemble averaged guadratic term is dependent on one momentum g, thus in
real space it is trapslation-invanant. It contains no angular or non-znalytic terms
whatsoever; dipolar contributions are ensemble-averaged to constants in the quadratic
term—this means in real space that no long-range forces exist. The effect of integrating
out ¢ in the ensembie-averaged quadratic term merely gives rise to constant contribu-
tions, which renormalize the transition temperature Ty.

We now examine the random ficld term, The ¢ term m the final Hamiltoman is
Cl¢., where the Linear coefficient

P
C;l = [Pp{}-ﬂ +§ r\z Eb parabpb+l+ﬁ]J0+l- (23)

Using the relations (13}, one can show C'=0, i.e. the Hnear coefficient C! is still
a random field. However, the random field distribution 1s altered by the combined
cffects of dilution and long range nieractions.

We now examine the higher order terms. The full cubic term in the final Hamiltonian
is O}, where the cosfficient

- A~ . B
C:ﬁ) = [%Mofﬂoﬂﬂﬂ“*"; (ﬁ’fof)' Zb Potiral abe+;+z:ljo+.fo+_;Jo+r- (24)

Using relations (13a), (135), one can show that the ensemble average of the cubic
tettn is zero, but there is a ¢° contribution owing to the fact that the ensemble average
of the sguare of the cubic term is non-zero, This will affect the tricritical behaviour
when the quarric ¢° terin vanishes.

The quartic ¢ contribution that arises from integrating out & is

1 Th4
E(MO"I) E ¢r¢;Jl*—ﬂll-rl)sx-ru+arab35+1+rn-]}+ﬂjm+0¢1¢m'
an

‘We evalyate the coefficient as follows,

P
= £n+_;+arabsb+l+rp= =x"7 §l+_|+a8b+l+mrab + Z Px+;+arabﬂa+l+m- (259
ab ab ab

From the appendix, using (A3}, (A4), (A10), one can show
Eb £I+j+ai abEb+l+m

1\* 2,
= x—[g;-lj “E:+;]V15:+;+J+m+ (‘A_') 2:-&-;[1 +__i‘£_
2

gi+‘, “Zt+}}51+3 chtme (26)

The ensemble average of this quartic ¢* contribution has a non-znalytic component
[g:4,—Z,+;17". Recali that g contains the non-analyiic dipolar term even though X is
analytic, This is very similar to (e non-analytic quariic ¢* contribution which Gehring
[6] cbiained from integrating ouw ¢ for the pure metamagnet in a uniform field. In
Gehring’s work [6], the non-analytic contribution is g,.,. The guartic werm in our final
Hamiltonian is essentially the same as Gehring’s [6] except for some constants.

One can also show the following;

COGT g (27a)
Cil)c{l) 20 (27b)
CECIC R0, (27¢)

Equations (27) show that there will be contributions to the guartic term from
averaging various combinations of quadratic, cubic and random field terms. The final
form of the quaric term will differ from that of Gehring [6], but should not change
the physies in any importtant way,
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4. Conclision

We have anotvsc 2 mathematical detail the effecis of dipolar interactions on the
DAFE. Apart fro.. so..¢ constants, the mean-field propagator of the DAFF and the
four-point quartic coupling vonstant are essentially the same as those corresponding
to the pure metamagnet in a uniform fleld with dipolar interactions investigated by
Gehring [6]. In particular, the mean-field propagator is analync and contains no
long-range forces of any order. This is equivalent to saying that, in the mean-field
approximation, dipelar forces do not contribute long-range forces of any order, being
cancelied out by the oppositely aligned spins of the antiferromagnetic ordered state.
Random dilution generates random patches of net ferromagnetism in the parr, yet
any dipoicr or higher order forces cancel out after averaging over the randomness. As
a side result, v. have shown that conceniration finctuations do not create any dipolar
orlong range contribution to the ensemble-averaged Green function n the ferromagne.
The quartic four-point coupling consiant contains a non-analytic contributien that is
essentizally the same as that of the corresponding pure system apart from some constants
Dilution creates a cubic term that is absent in the pure system, but the ensemble average
of this term is zero. If we stay in the realm of a sscond-order phase transition, then
the cubic term is irrelevani. We can conirol the uniform field so that the random field
is weak and thus remain within a second-order phase transition. If we increase the
uniform field, the random field strength increases and the sysicm may reach 2 tricritical
point, where the cubic term will be important; the square of the cubic term will give
a ¢° contribution. With nearest-neighbour interactions only, site dilution in the pars
coupled to a uniform field generates a random field with a discrere distriburion of a
few points. Dipolar forces create a long-range effective field which renders the random
field distribution continuous.

We have confined ourszlves to the equilibrium critical properties of the parF. It
is well kitown that the dynamic properiies of random figld models mncinding the DArFF
are very different from those of pure systems, involving different relaxation mechanisms
and long relaxation times. Many actual random field models find it difficult {o reach
equilibritum for static sxponents to be measured, The dvnamics of random field models
is still a topic of active controvermial study (for z review, see Villam [7]). The parr is
a random field model where it is experimentaily possible to obtain an cquilibrium state
below the transition temperature. By cooling at zero uniform field and then subsequently
applying a uniform field, an expenmentalist can achieve the equilibrium long-range
ordered stats. For 5 review of experiments on random feld systems, see Birgenean ef
ai {10] and Belanger [11].

We have considered the equilibniom thermodynamics which imply that the sysiem
evolves into a state of long-range order without domains in obtaining our resuits. host
random field systems reach a metastable state below the transition temperatnre. For
the DAFF, it is possible to atiain this metastable state by cooling at a non-zero uniform
fiekd. In the metastable state, domains exist, and Naitermann [4] has shown the dipolar
forces favour this matastable domain state for the parr, This would mmply that dipolar
forees further discourage the system from jumping out of metastable barriers and hence
lengthen the critical slowing down tirues. Along certain ovientations, depending on the
crysial symmetry, the antiferromagnec can have & domain wall that kas & magastic
moment. To our knowledge, no work has been done on the potentiat influence dipolar
forces can have on the domain wall dynamics, although Natterimann [4] has shewed
that dipolar forces are irrelevant in flat intesfaces in the DAFF, Our guess is that whaiever
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dipolar energy is stored in the domain walls will be small in comparison to the dipolar
energy in the bulk domains. Further work should be done on this area.

Acknowledgment

The authors are indebted to Professor T Mattermann for invaluabie discussions.

Appendix

To derive G, we follow the paper by Edwards and Jones [9], who expanded G in
powers of f and p (cf equations (17) and (18)):

Gy =f8.4) t Mo fiT oo T+ 43 %.ﬁ-’;pwbjbﬁ:}bprrJ};fj +... (A1)
iry = g16l+j + "-Eg:p:-i-_;gj +1\i %: B oZbLo+ 8 t.... (AZ)
They then utilized a diagrammatic ezpansion:

1 ] ]
1 i i

Py= &+ —2 &+ —4 & 4...
where ——=g(g) and - - - = A,p(q)
- 4+ 4.

whers +=A3x{1—x) and

Q._. =adx(1 -x)({ gl@) dq)gz(q[)

b v+ —— + @+

@is the self-energy Z{g), which is the sum of all irreducible diagrams without external
propagators or “legs’. Irreducibility is defined as the impossibility of cutting one
connected diagram into two separate diagrams by cutting just one propagator.

T, =184, (A3)
Sy=g+gle+zsiglat... =g -2 (Ad)

(A4) is the Dyson equation. gla) coniains the non-analytic dipolar contribution
(9./¢}*. Z(g) is analytic and well defined in the limit g »0. Z{g) coniains integrals
whase dipolar angulsr terms are dominated by the internal dummy momenia as the

exiernal momenium ¢ goes 10 Zero, e.g.
Z+ = : z ?
lim (——————q‘ ‘1-) = (1’—) .
a0\ |g; +g] 0

momenta are well defined and independent of'the direction of the external momenium g
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Having determined T, we can now caleulate equations (20), (21). We utilize
retations {13). From equation (13b) it is not difficult to prove that

PoribiPz- - Pa=0. (A3)

T, contains p, terms and no ‘staggered” dilution terms like py.,. Using (A5}, we
can perform the separation

Poriral abPoiyr0= p0+x+upb+_y+orab

= B r-al b ro = X1 =X)Btarns)(Yabass)
which leads to equation (20).

Bl ap€piiry = Xpal apBpere,t Bal cnforiv) {A6)
We begin with p.I,,. From (AZ),

pﬂrab =Pa [ga§a+b + )‘Zgapcﬁﬁgb + . -]

=, b T (AT)
i a 1 b
| 1 1
¥ oo
4 Ga a5

On averaging,

S : Sor 4 g1
la=[ @ + @B 4+ |- T 6 (A9
2

By conservation of momentum, because there is only one external momentum, we
require g, =0. g(q) is defined only for g+ ¢. T.1s 1s because lim,,, g(g) is not well
defined; at g=0, we get a shape-dependent consiant term which has aiready been
tzken into account in the constant magnetization M, [3]. By definition, g(a)=0 at
g =0 [3]. It follows thar

palap=0. (A9)
We now turn our attention t0 g, au0p10pe
From (Al),
% PalapPyriey = Z;; PofaPoviiy T % AoPolaBaxbEoPbiity ot (A10)
a al al

Z parahpb+x+}
ab

= (i) [Z(0)+Z(0)g(0)2(0) + 2(0)g(0)2(0)g(DE(0)} + .16,  (AID)

But 2{0)=0 [3]. Combining (A9) and (Al1), we obtain

S S A
24; parab€b+5+_; = (1_2) 2(0} 31*—; (A‘i?.)

which is equation {21).
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