
Dipolar interactions in the dilute antiferromagnet in a uniform field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 5401

(http://iopscience.iop.org/0305-4470/24/22/022)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 14:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J Phys. A Math Gen. 24 (1991) 5401-5410 Pnnted in the UK 

€3 S Toh and G A Gehringi 
Depanment ofTheoretical Phystcs, University ofoxford, 1 Keble Road, Oiford OX1 3NP, 
UK 

Reeetved 18 Julv 1991 

AbsimCt. W e  eaamine the role pla)ed by dipolar interaetmnr m the equilibrium cntical 
beha$mur of the dllut? antlfenomagnet tn a unrfam field (CAFF) The DAFF has been 
h o w n  te map onto a rendom field model, and we perform a mmlar mappmg, only this 
time including dipolar xnteractions. We conclude that dipolar forcer affect the OAF€ m a 
way no different from the ease for the corresponding pure system Dilution does not 
genecafe any addmanal long-ranpe forcer. 01 other effeas anring from dipolar forces In 
particular, in the final random field model which the DAfF maps onto, we find that the 
mean-field propagator is unaEected by the inclusion of dipolar  interaction^ save for some 
coastant terms We restrict OUT m r k  to the critical regron close to the transition tempeiature 
and assume a domamfree state 

I. sntm&ncttion 

The dilute antiferromagnet in a uniform field (DAFF) has been shown to be described 
by a random field model (Fishman 2nd Aharony [I], Cardy [21); it is the dliution of 
bonds or sires, coupled to the uniform field, that generates the random field [I, 21. 
Taking into account nearest-neighbour mteractions only, Fishman and Marony [l] 
and Cardy [2] showed that the Hamiltonian describing the DAFF is the same as that 
descnibing the random field Ising model (RFIM). However, all magnetic systems contain 
long-range anisotropic dipolzr forces. These forces decisively affect the universality 
properties of certain systems, e.g. the Ising ferromagnet [3j. The influence of dipolar 
forces on the DAFF has been treated bne%y 5:. Nattermann [4]; he showed that in the 
low-temperature muftidomain state, in the presence of dipolar forces the DAFF is no 
longer in the same universahty class as the random field Isiug model with nearest- 
neighbour interactions oni j  (short range RFIM). Nattermann 141 also predicted that 
the upper critical dimension d, still remains at 6 for both systems even if one takes 
into account dipolar forces in the DAFF, and high dimensions close to dc, dipolar 
interactions will not change the sfafic critical exponents. Uowever, in Nattermann’s 
work the ferromagnetic fluctuations were neglected [SI and it is :he purpose of this 
paper to include them carefully 

The inthence of dipolar interactions on 2 pure antiferromagnet has been studied 
by Gehring [61, starting with both antiferromagnetic and ferromagnetic order pars- 
meters and thm integrating out the fexomagnetic order parameter. The resultant 
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Hamiltonian was the same as that for the pure Ising model, except that the quartic .$4 

term has an angular contribution due to dipolar forces. The quadratic .$2 tenn is 
unaffected. This work seeks to investigate if any additional dipolar effects woald arise 
with diluting the antiferromagnet, as in this case the ferromagnetic fluctuations couple 
directly to the antiferromagnetic order parameter [l, 21, as well as to the antiferromag- 
netic energy density as for the pure metamagnet. With dilutlon we have a random field 
model cl], and we can expect the non-equilibrium behaviour typical of such systems 
(e.g. see Villain [7]). To study the dynamics pltis the effects of dipolar forces on the 
dynamics, one may have to go beyond deriving the Hamiltonian. 

This work will restrict itself mostly to the equilibrium situation, ihough a brief 
mention of dipoiar effects on the non-equilibnum behaviour will he made. A s  such 
we will work within the following restrictions: 

N S Toh and G A Gehnng 

(i) extremely close to the transition temperature TN 
k) high dimensions c!ose !o ?be u p p  cd?ice! dimezsia.? do 
(iii) the transition is lo an antiferromagnetically ordered phase. 

2, Dorivs?icn ob the Hamiltonlao 

Using fieid-theoretical methods, Cardy [2] mapped the DAFF onto the RFIM, hut he 
did not include dipolar interactions. Nelson and Fisher [SI treated the problem of a 
pure metamagnet in a uniform field, using renormalization-group (RG) scaiing argu- 
ments and lwo order parameters-an antiferromagnetic primary and a fernmagnetic 
secondary order parameter-integrating out the secondary order parameters. They too 
did not take into account dipolar forces. Our approach will combine the methods o i  
Cardy [Zj and Nelson and Fisher [SI. 

The Hamiltonian in real space for the sitediluted king antifenomagnet in a uniform 
field is as follows 

where 

S ( r )  = il 

t & ( I ) =  

X = ( E ( r ) )  

& ( I )  = x + p ( r )  

if a spin i j  absent at si?e r 
if a spin is present at site r 

and Zi is the uniform field. J( r - r') is the interaction between spins at r and i', and 
includes nearest-neighbour exchange as well as long range dipolar interzctions. 

We use the Hubbaid-Swatanovitch transformation to convert to a field theory 2nd 
shift to eliminate the uniform magnetization MO. The magnetization fluctuation terrns 
are expressed in terms of a ferromagnetic and an antifenomagnetic component d q )  
and + ( q )  respectively in a reduced zone which is defined by ko such that 

site n on sublattice A 
site n on sublattice 5. 
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We define the Green functions for a pure ferromaagn&tj(q) and the Green functions 
G(q,, q2) and K(q, ,  g2) for the dilute ferromagnet 2nd antiferromsgner respectively. 
For convenience we use a tensor notation. Repeated indices are not summed over, 
unless explicitly stated. 

Wq,, B,)=G, T ( k o + q r ) = J w r  
( 2 )  

f ( B J = f ;  

The non-analytic dipolar contribution is present in Jq and hence in G, and f;. The 
relevant tems in the effective Hamiltonian are given below. 

%3=Z X5'+&+P Z: ~ o + J o - ~ + c + f & J X  . . . . . . . . . . . . . . . . . . . . . . . . . .  
i ' I 1  

+?E r,+,J,+,J,+iJ~,+~+i+,+,+,+,+,+,+I: G;'J,.l,o,u, +2 Z B z k  (7) 12 3, 

where 

P = & M J ) * - I ] M J  

and 
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We see that after integrating out U, there are contributions to 9, rb', +', +4 

3. Analysis of the Hamiltonian 

We now analSse the Hamiltonian of equation (10) and the terms in equation (12). The 
ferromagnetic order parameter was non-critical and mean-field; integrating it nut of 
the partition function could be thought af 2 s  averzging over the ferromagnetic inter%- 
tiono in the DAFF. from which additional contnburions to the antiferromagnetic terms 
arise. Gehring [6]  performed a similar 'integrating out' for the corresponding non-dilute 
system; there dipolar interactions were taken into account, and she found that there 
was only a conhibution to the quartic 4' tem. We analy. se the role of both random 
diluhon and dipolar interaciions in these contributions fcr the DAFF. r ,  is related to 
the dilute ferromagnetic propagator and contains a non-analytic dipolar contribution. 
From equation (12) it is obvlous that all terms in B,K',B, contain non-analytic dipdar 
contributions. Bowever, all terms also contain the random dilution variables p .  E, and 
it remains to be determined whether the ensemble average of each term will still contain 
any non-analytic contributien. We will examine the final form of each power of + in 
the Hamiltonian of equation (11) separ.itely. 

To determine rhe ensemble aveiage ~6 all terms, we use the following relations: 

(13a) 

(136) 

____ -- 
Po+#c+d = P n + b t O P c + d + o = x ( ~  - X ) S a + b + < + d  

@U +bP<+d+O=0.  
_- 

(2 means the ensemble average of A.) 
We begin w;lh the quadratic a2 term, because the imerse of the qusdratic term is 

tke mean-field susce?tibility. If the: mean-field susceptibility has contnbutions from 
the 'Integrating out', then the system will be afiected at the mean-Geld level Higher 
order terms may affect the universality class and critical behavionr of the system, but 
only at a level beyond the mean-field approximation. En the standard graphical 
penurbation treatment of critical system beyond t t e  mean-field approximation, all 
perturbation terms are expressed in terms of the mean-field propagator. Iithe rkean-field 
propagator contains any contribution terms that changes the physics in an important 
way, all tsrms in the penurbation series will be correspondingly aHected. We wish to 
determilie if the ensemble-a9eraged quadratic mean-field propagator contains any 
long-range force or anisotropy arising from the combined effects of dilution and dipolar 
interactions. If the ensemble-averaged quadratic term in the DAFF contains any 
anisotropic contribution, the unwereali;y of the system will be altered and thc static 
criiical exponents affected [;I. By conpanson, for the non-dilute antiferromagnet in 
a uniform field, the quadratic propagator is unaffected by the inciusion of dipolar 
interactions sfter hiegratin8 out the U 161. 
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The full quadratic term in the 5nal Hamiltonian is C?+,4> where the coeEclent 

crl= K;'+ A; z PO+r+drubPbr,-O+!PtMgj)* I ob ~,T.~E*-,+,IJ.+.J,+,. (14) i afi 

- We wish to determine the ensemole-averaged quadratic term, which will involve 
C'*'. This in turn involves To and it? ensemble average q. From equation (ll),  we 
need to determine Gv which is the in:.erse of 

G,' =f;'sz, (15) 

\Ye define 

g, E JJX (16) 

Gg = X & ,  -5 WXp,~,J,XfA: If;J,p,+rJ& J.%+,JJJ:+ (17) 

+r - - g - 5 , " 1 + ,  --s +'~",, '.26,11i+,6, , ia?r , ,  I " 2 i b l r l + i ~ ~ p b + , $ + . . - .  (18) 
b 

b 

In deriving equation (18) we have used equations (11) and (16). 

E:; or in ordinary momentum-space notation .(a); is the self-energy and is analflic 
and well  defined even as q tends to zeio. For a more detailed proof of equations 
(15)-(19) and the properties o f 2  and y, see the apandix.  We have just derived a side 
result for spin waves in a dilute feiromagnei, even though this work is concemed with 
the dilute antiferromagnet The eRect of dilutiol: is io create a self-energy contribution 
X(q) to the energy of Sic ferro~z,gie!ic spin waves (Edwards and Jones [9]). By 
showing that dipolar itxer~ctims a0 not contribute 2ny non-analytic term to the 
J r z L - s M n ~ y ,  w'i l*f"r US1",1UlliCiiiY L ' l C L  UILiiiiYL' YUCS LIYL CLC*LT a u y  u,piuiri, "1 rayLr, 
order long range contribution to the spin wave energy and ensemble-averaged Green 
function in the kznmagnet. 

"..VC"..,."".. A ____ ..*--+-A ,Le. 2:1...:-- A ^ ^ _  _ ^ &  ^_^^&^ 2:--,"- "- 

For a more detailed proof of equations (20) and (21), refer io the appendix. In 
equation (20), y .  is summed over the internal dummy momentum qb; hence it is a 
constant independent of external momenta E(q) has a we11 definrd~ limit at  q = 0; 
hence in equalion (21) F,.(Ql is also a constant. Using equations (ZO), (21) the enswdde- 
ouera& quadratic term is 
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The ensemble averaged qaadratic term is dependent on one momentum q,, thus in 
real space it is translation.invanant. It contains no angular or non-analytic terms 
whatsoever; dipolar contributior.s are ensemble-averaged to constants in the quadratic 
term-this means in real space that no long-range forces exist. The effec? of integrating 
out 07 in the ensemble-averaged quadratic term merely gives rise to constant contribu- 
tions, which renormalize the transition temperature TN. 

We now examine the random ficld term. The $ term In the final PIamiItonian is 
C$,, whae the linear coefficient 

I (23) c : - - [ p P ~ + . + l ~ l l : P u r a a P h + . - i .  P Jo+z. 
- r b  

Using the relations (13), one can show C’=O, i.e. the fincar coefficient C‘ is still 
a random field. However, the random field distribution IS altered by the combined 
effects of dilution and long range interactions. 

We now examine the higher order terms. The fnl: cubic ierm in the final Hamiltonian 
is C2’+L$,$t where the coeEcieni 

C $ ) =  fMo~po+,+,+,t’(bI$?’ 2 i ? O + d a b P b + , + l  Jo+,Jo+,Jo+r. (24) 

IIsing relations (13a), ( 1 3 h ) ,  one can show that the ensemble average of the cubic 
term is zero, but there is a $6 contnbution owing to the fact that the ensemble average 
of the square of the cubic term is 1103-zero. This will affect the tricritical behaviour 
when the quartic Q‘ i e m  vanishes. 

[ 2 ob I 
The quartic $* conttibutim :hat arises from integrating out v is 

%%i)4 c $4, J,iaJ,,o&,,+,r. ,E,+,+,~J,+~J*+~~i$*. 
a* 

We evaluate the coeriicient as follows, 
s t+ i+zrab&B+,+m=X2 ~ , + j + e a O + I + m ~ a S + ~  K+j+orabPo+l+m.  ( j 5 )  

ab ab ab 

From the appendix, using (A3), (A4), (AlO), one can show 
c &t+i+arabCs+r+m 
ab 

&+, i 1 tm.  (26) 

The ensemble average of this quartic $4 contribution has a non-analytic component 
[g;:, -Z,+J*. Recali that g contains the non-analytic dipolar term even though 2 is 
analytic. %is is very simiiarto the non-analytic quartic m4 contribuoon which GEhnng 
161 obtained from integrating oui U for ?he pure metamagnet in a uniform field. In 
Gehriug’s work [GI, the non-analytic contribution is g.+,. The quartic term in our final 
Hamiltonian is ersenrially the same as Gehnng’s 161 except for some constants. 

1 CJ2 E gt+,-x+, 
L i  =x’lg;:--z,+,l-’~,+,+l+*+ - z,+, I+  -* 

One can also show the following: - 
C‘3’C’ # 0 ( 2 7 4  
C‘Z’(52’  # 0 (276) 
C‘2’C’Cl f 0. (27c) 

Equations (17) show that there will be contributions to the quartic term from 
averaging various combinations of quadratic, cubic and random field terms. The find 
fom OF the quarnic tern1 will difter f ror~  ?hat of Gebring [ 6 ] ,  but should not change 
the physics in any important w3y. 

___ 
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4. COQCll&J5 

We have an.d:ird ?? mathematical detail the effects of dipolar interactions on the 
DAFF. Apa*r fro,.. soi,.e constants, the mean-field propagator of the DAFF and the 
four-point quartic coupling cinstant are essentially the same as those corresponding 
to the pure metamagnet in a uniform field with dipolar interactions investigated by 
Gehring [6].  In particular, the mean-field propagator is analyric and contains no 
long-range forces of any order. This is equivalent to saying that, in the mean-field 
approximation, dipolar forces do not contribute long-range forces of any order, being 
cancelled out by the oppositely aligned spins of the antifenomagnetic ordered state. 
Random dilution generates random patches of net ferromagnetism in the DAFF, yet 
any dipo2.r or higher order forces cancel out after averaging over the randomness. As 
a side result, 'mve shown that concentration fluctuations do not create any dipolar 
or long range contribution to the ensemble-averaged Green function in the ferromagnei. 
The quartic four-point coupling constant contains a non.analytic contribution that is 
essentially the same as that ofthe corresponding pure system apart from some constants 
Dilution creates a cubic term :hat is absent in the pure system, but the ensemble average 
of this term is zero. If we stay in the realm of a second-order phase transition, then 
the cubic term is irrelevant. We can control the uniform field so that the random field 
is weak and thus remain Tvithin a second-order phase transition. If we increase the 
uniform field, the random field strength inczeases and the sykernmay reach atricntical 
point, where the cubic term will be important; the square of the cubic term will give 
a @6 contribution. With nearest-neighbour interzctions only, site dilution in the DMF 
coupled to a uniform field generates a random 3eId with a discrere distribution of a 
few points. Dipolar forces create a long-range effective field which renders the random 
field distribution continuous. 

We have confined oursalves to the equilibrium critical properties of the D A m .  It 
is welt known that the dynamic properties of ra-dom field models including the DAFF 

are very diiferent from those of pure systems, involting diEerent relaxation mechanisms 
and Long relaxation times. Many actual random field models find it di6culr to reach 
equilibrium for static exponents to be measured. The dynamics of random field models 
is siill a topic of active controversial stEdy (for a review, see Villain 171). The DAFF is 
a random fieid model where it is expenmentally possible to obtain an equiiibrium state 
below the transition temperature. By cooling at zero uniform field and then subsequently 
applying a uniform Beid: an expenmentalist c m  achieve the equifiinrium long-range 
ordered stax. For z review of experiments SE random field systems, see Birgeneau et 
ai [IO] and Belanger [ll]. 

We have considered the equi!ibnum thermodynamics which imply that the system 
evolves into a stateof lozg-range order without domains in obtaining our results. Most 
random seld sys?ems reach a metastable state below the transition temperature. For 
the DAFF, it is possi'oie to attain this metastable state by cooling at a Iton-zero uniform 
field. In the metastable slate, domains exist, and Mattermann 141 has shown the dipolar 
forces favour this metastable domain state for the DAFF. This would Imply that dipolar 
forces further discourage the system from jumping out of lcetastahle barriers and hence 
lengtlion the critical qlowing down times. Mong certain orientations, depending on the 
crystal symmetry, the antifmomagnec can have a domain wail that has a magnetic 
moment. To our knowledge, no work has been done on :hr potential influence dipolar 
forces cm have on :he domain wall dynamics, although Nattemmn [4] has showed 
that dipoIar forces E X  irrelevant in Sat interfaces in the DAFF. Our guess is that whsiever 
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dipoiar energy is stored in the domam walls will be small in comparison to the dipolar 
energy in the bulk domains. Further work should be done on this area. 

H S Toh and G A Gehring 
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Appendix 

To derive Gg we follow the paper by Edwards and Jones [9], who expanded G in 
powers o f f  and p (cf equations (17) and ( l e ) ) :  

Gy=L8t+] +h,f;lp,+, .r , ,f;fh:Cf;l ,p, ,bJbf,y,p,+,J,f;+. . . (AI) 

jr~,=g,S,+,+A,g,p,+,g,+,~i~glplTlgbPbtigii .... W) 
b 

They then utilized a diagrammatic expansion: 

where -= g ( q )  and - - - = h , p ( q )  

- r,,=- + Q + ... 
where + = h : r ( l - x )  and 

- re=- + + +  + ... , 

@is the self-energy Z(q), which is the sum of all irreducible diagrams without external 
propagators or 'legs'. Irreducibility is d e h e d  as the impossibility of cutting one 
connected diagram into two separate diagrams by cutting just one propagalor. 

(M) 

(A41 

(AA) i; the Dyaon equation; g<$) contains the non-analytic dipolar contrihution 
(q,/qj2. E(#) is analytic and well defined in the limit q + O .  X(q) contains integrals 
whose dipolar angular tenns are dominated by the inlemai dummy momenta as the 
external momentum q goes to zero, e.g. 

- rq = Y A ,  

* Y ,  = g,+g~Z:.g,+~,E,g,Z,g,+. . . = [g;'-z.l-' 

Such anguiar terms when summed over aii directions and angies for the iiiteniai 
momenta are well defined and independent ofthe direction ofthe extemal momentum 9. 
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Having determmcd r,,, we can now calculate equations (20), (21). We utilize 

(As) 

rob contains pz terms and no 'staggered' dilution terms like p a + , .  Using fA5), we 

relations (13). From equation (13b) it is not difficult to prove that 

PO+,PIP* . . P .  = 0. 

can perform the separation 

PO+t,arnbPb+j+O= PO+i+nPb+,+Ornb 

=SPo+,T.rebPb+,+o = ~ ( i  -x)8r+z+bA,(%&+b) 

which leads to equation (20). 

Par&+zo XP.r,bSb-~+,+P.r.bPb+~+,, 

We begin with parns .  From (M), 

Para6 = P . ~ g n ~ ~ + b + ~ 2 g n ~ a + b g 6 +  ..I 

I- + -?;;a+-' - - 
I -go 

i $ 1  
4- 4. -4,-4a 

On averaging, 

By conservation of momentum, because there is only one extemal momentum, we 
require q. =O. g(q) is defined only for q Z 0. T.B IS because Iim+ g(q) is not well 
defined; ai q = 0, we get a shape-dependent constant term which has already been 
taken into account in the constant magnetization MO [3]. 3y definition, g ( q ) = O  at 
q = 0 [3]. It follows tbsr 

- 
Parub = 0. ('@as) 

We now turn our attention to pJ.bpb+,+,. 
From tal), 

c ParnbPbtzz ,  = Pag:g,Pe-z+j h2?&&a-b&bPb+r+, +. . . (Ala) 
ob ab ob 

Pn~ab,Ob+8+, 
nb 

= ( ~ ) * i z ~ o ~ + ~ c o ! & ~ o ~ L ~ o ~ + Z ~ O ~ ~ ~ O ~ L ~ * ~ ~ ~ O ~ z ~ O ~ +  ..I&,. (All)  

But g(O)=O 131. Combining (A91 and (All), we obtain 

which is equation (21). 
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